
Submodule Construction for Extended State Machine
Models

Bassel Daou and Gregor v. Bochmann

School of Information Technology and Engineering (SITE)
University of Ottawa, Canada

bdaou@site.uottawa.ca, bochmann@site.uottawa.ca

Abstract. In this paper, we consider the problem of extending existing sub-
module construction techniques that have been developed for finite state models
into more expressive and compact behavioral models that handle data through
parameterized interactions, state variables and simple guards. We provide a be-
havioral model based on extended Input-Output Automata and describe an algo-
rithm that provides the solution to the submodule construction problem in the
context of this extended behavioral model. This algorithm is based on abstract-
ing variable configurations using the concept of variable partitions, and splitting
of states obtained from the finite state machine model in order to satisfy the
constraints imposed by the values of exchanged interaction parameters.

1. Introduction

Submodule construction, also called equation solving or factorization, considers the
following situation: An overall system is to be constructed which consists of several
components. It is assumed that the specification S of the desired behavior of the sys-
tem is given, as well as a specification of the behavior of all the components, except
one. The process of submodule construction has the objective of finding a specifica-
tion for the latter component such that all components together provide a behavior
consistent with the behavior specification S. If the modeling paradigm for the behav-
ior specifications is sufficiently limited, e.g. finite state models, an algorithm for sub-
module construction can be defined [MeBo83, Parr89, Shie89, LeQi90, DrBo99].
Submodule construction finds application in the synthesis of controllers for discrete
event systems [BrWo94], communication gateway design and protocol conversion
[KeHa93, KNM97, TBD97].

In this paper we consider submodule construction techniques for state transition
models extended with state variables, interaction parameters and simple guards for
transitions. We use a specification paradigm which is an extension of partially speci-
fied Input/Output Automata as discussed in [Boch02]. The main difficulties encoun-
tered when solving the submodule construction for such extended specification mod-
els are the following:
a. One has to keep track of the relationship between the variables of the new module

X, the variables of the system specification and the variables of the existing com-
ponent C.

b. For each of the input or output transitions of the new component X, one has to de-
cide which local variables should be used to store parameter values received by an
input, or which local variable should be used to define the value of an output pa-
rameter.

c. There may be many different global system states that may be reached depending
on the choices that are taken under point (b) above. We want to find the most gen-
eral specification for the component X such that without introducing not allowed
output to the environment of the system nor unexpected input (for the existing
component C) from the component X or from the environment.
Our approach for solving this problem without simply enumerating all possible

choices for the new component X is based on the following two ideas:
1. In order to model the equivalence between different variables in a given state, we

consider partitions over the set of all variables. A partition defines a set of non-
overlapping subsets of variables, and our partitions have the property that all vari-
ables that belong to a given subset of the partition are equivalent, that is, known to
have the same value.

2. After applying submodule construction for the IOA model (following known
methods [QiLe91, BrWo94, KNM97, DriBo99]) we analyze the resulting state ma-
chine for X in order to determine which partitions may apply for each of its states.
Since for a given state, some partitions may lead to invalid behavior, we introduce
a transformation step in which the states of the component X are split according to
the possible partitions that can be reached. The purpose of this splitting is to pre-
serve the acceptable behavior (related to a particular partition) and eliminate inva-
lid behaviors (related to other partitions). The splitting of one state often leads to
the need for splitting other states from which the former can be reached. We there-
fore come up with a recursive splitting algorithm which allows us to eliminate all
invalid behavior and keep all acceptable behavior, that is, we obtain the most gen-
eral solution.
To simplify the problem we only deal with safety properties postponing issues re-

lated to liveness like blocking and progressiveness that has been solved for finite
models [KNM97, DriBo99, BEYB03]. We note, however, that blocking will be par-
tially solved in our context since we assume that the system component can not block
any input from its environment.

The paper is structured as follows. In Section 2 we give the definition of our ex-
tended IOA specification formalism. Section 3 describes our submodule construction
algorithm for extended IOA and gives some examples. Given the limited space in this
paper, we concentrate on the definition of variable partitions and the state splitting al-
gorithm.

2. Behavioral Model

We start by adopting a behavioral model that manipulates data and compactly repre-
sents large or infinite state systems. The model we suggest is an extension to the IO
automata model [LyTu89].

2.1 Behavioral model properties

We stress mainly two aspects of the model: data manipulation and value passing, and
differentiation between input and output in an assumption guarantee model.

2.1.1 Data Manipulation and Value Passing
The usage of dataflow information in models allows more compact and expressive
representation of systems. Data manipulation and value passing can be achieved
through extending finite automata models with parameterized interactions, local vari-
ables, simple transition guards and variable assignments. Parameterized interactions
are used to represent the exchange of data between components and between compo-
nents and the environment. Processing of data is done through saving values of input
parameters in local variables, and using these values later to define the values of out-
put parameters. Our model does not apply any operation on received data, and guards
over data are simple equality checks used to represent the assignment of values to pa-
rameters, or in other words a restriction to the values that can be assigned to the pa-
rameters. Though the formal model that we present later allows for restrictions on in-
put values, we assume that the behavior specification of C and S do not use this
feature, since we are only using the guards to represent variable assignment to pa-
rameters.

2.1.2 Differentiation between Input and Output in an Assumption Guarantee
model
As in the IOA model, a system has no control over its input interactions; however, it
can assume that certain inputs are not possible. Similarly, a system might be required
to give guarantees that it does not send certain interactions at certain states. This con-
cept is generalized in our model to cover parameters sent and received alongside an
interaction. So a machine can have assumptions that only specific values can be re-
ceived using the transition guards and guarantees that it sends only specific values as
parameters of output interactions it initiates. We use partial specification to indicate
input assumptions and output guarantees, that is, if at a given state there was no tran-
sition labeled with a given interaction, then this indicates that the machine assumes
that its environment will not generate that interaction at that state. Same applies to the
case of output guarantees, where if an output interaction and a given output valuation
of the interaction parameters was not specified, then that interaction and parameter
valuation is guaranteed not to be generated by the machine.

2.2 Extended Input Output Transition Systems

In the following we present a formal definition of what we call Extended Input-
Output Transition System (EIOTS), inspired from the Input Output symbolic Transi-
tion System IOSTS in [RBJ00], I/O Automata [LyTu89], and CSP [Hoar85]. An
EIOTS is tuple < S, V, s0, Se, ∑ , T> where
• S is a nonempty finite set of states.
• V is a finite set of variables.

• s0 ∈ S represents the initial state.
• Se ⊂ S represents the set of error states resulting from either a not allowed output

or an unexpected input. All transitions starting at an error state should lead to an er-
ror state.

• ∑ is a nonempty, finite alphabet, which is the disjoint union of a set ∑in of input in-
teractions, a set ∑out of output interactions, and a set {ϊ} which has the special in-
ternal interaction ϊ. For each interaction α ∈ ∑in U ∑out, there is a (possibly empty)
ordered set of interaction parameters Pmα = <pm1,…, pmk>,

• T ⊆ S x 2PmxV x ∑ x 2VxPm x S. Each tuple (s, γ, α, θ, s’) ∈ T represents a transition
where:

• s ∈ S is the starting state of the transition.
• γ ⊆ Pmα xV. A couple (p,v) ∈ γ represents an equality condition of the

form (p=v). If α is an input interaction then γ is interpreted as a transition
guard formed by the conjunction of all constituting parameter conditions. If α
is an output interaction then parameter conditions are interpreted as assign-
ments of variables to parameters or in other words a restriction of the possi-
ble values that a parameter can take.

• α ∈ ∑ is the transition’s interaction.
• θ ⊆ Vx Pmα. Each couple (v, p) ∈ θ represents an assignment of parameter

p to variable v. The assignments in θ are executed during the transition after
the assignments in γ; they assign new values to some of the variables in V. A
variable is allowed to be assigned only once, this makes θ belong to the set of
partial mapping relations in Vx Pmα

• s’∈ S is the end state of the transition.

The EIOTS shown in Figure 1 is taken as
an example throughout this paper. It repre-
sents a desired system behavior S. In our
notation, a question mark next to the inter-
action label represents an input, and an ex-
clamation mark represents an output. Cir-
cles represent states and arrows represent
transitions.

A

B D

F

?n(p)
{sv:=p}

{p=sv}
!use(p)

?ack?m

 !rack

C
!O

Fig 1. EIOTS S

3. Submodule Construction Algorithm

The algorithm follows the general steps of submodule construction algorithm for fi-
nite state machines namely composition, hiding, determinization and bad or uncon-
trollable state removal. However, these steps have to be adapted for the new specifica-
tion paradigm. To allow for determinization to take place we need to remove the
effect of hidden guards and hidden variables. This is done through state splitting
transformation.

In algorithm 1 we list the general steps of the submodule construction algorithm
which basically include computing the unrestricted general behavior formed from the
composition of the Chaos machine of X with the specification and the context. The
chaos machine represents the most general behavior of X and uses as many variables
as there are in S and C combined. To enable the composition between S and C we
need to apply the duality operator to C which gives a machine that has the same struc-
ture as C with the exception of interchanging input and output interactions ∑out and
∑in. The duality operator is applied as well to the composition so that we can compose
it with the Chaos machine. Then, the resulting EIOTS is transformed using state split-
ting. After splitting we hide all interactions that are not visible to X and all variables
coming from S and C. Finally, we handle the nondeterminism introduced by hiding,
and we remove all uncontrollable behavior, that is, we mark all states that uncontrol-
lably reach an error state as “bad”, and add them to the set of error states.

To illustrate the algorithmic steps we use a submodule construction example. The

general system specification S is given in Figure 1. Figure 2a below shows the behav-
ior of the context and Figure 2b describes the general problem architecture. To distin-
guish variables of various machines, we use the name of the machine as a prefix when
naming variables.

1

2 3

4

?c(p)
{cv:=p}

?O

?ack
5

 !a

?c(p)
{cv:=p}

{p=cv}
!use(p)

Fig 2a. Context Behavior

c(p)
a

Specification

X Context

m
n(p)

use(p) ackrack

cv

sv

O

xv1 xv2

Fig 2b. Example Architecture

In the following sub sections we go through the operations on EIOTSs needed for
the submodule construction algorithm stressing on composition, and state splitting
operations.

Algorithm 1. Submodule Construction Algorithm:
Given C, S: EIOTS, ∑X Interaction Alphabet return EIOTS

• G1 := Chaos(∑X , |S.V| +|C.V|) xDual(SxDual(C))
• G2 := Split(G1,∑X)
• G3 := Hide(G2, (∑C U ∑S) - ∑X , S.V U C.V)
• G4 := Determinize(G3)
• G5 := RemoveUncontrollableBehavior(G4)
• Return EIOTS G5

3.1 Composition

The composition of EIOTS follows the composition of partially specified IO Auto-
mata [KeHa93]. That is, transitions with common interactions are executed synchro-
nously and transition with interactions particular to each machine are executed inde-
pendently, assuming that for each interaction there is only one initiator, which is one
of the two composed machines or the environment.

Concerning the extended elements of the EIOTS model, the resulting composed
machine will have a set of variables which is the disjoint union of the variables of the
component machines, assuming that the machines have distinct variable names. When
composing two input transitions, the resulting transition will be an input transition.
Meanwhile, when composing an input transition with an output transition, the result-
ing transition will be an output transition. In both cases, the parameter conditions of
the resulting transition will be the conjunction of the parameter conditions of the con-
stituting transitions. Similarly, the variable assignments of the resulting transition will
be the union of the variable assignments of the constituting transitions.

The composition of two EIOTSes E1 < S1, V1, s01, Se1, ∑1, T1> and E2 < S2,
V2, s02, Se2, ∑2, T2> is an EIOTS E < S, V, s0, Se, ∑, T> that is formally defined as
follows:

• S = {(s1,s2)| s1 ∈ S1 and s2 ∈ S2}
• V = V1UV2, the union of variables in E1 and E2.
• s0 = (s01, s02)
• Se = {(s1,s2) | s1∈ Se1 or s2 ∈ Se2}
• ∑in. = (∑1in - ∑2out) U (∑2in - ∑1out) Note: Input interactions that are neither

initiated by E1 nor by E2.
• ∑out. = (∑1out U ∑2out). It is assumed that (∑1out ∩ ∑2out = {})
• T = union of

o {((s1,s2), γ1, α, θ1, (s1’,s2)) | (s1, γ1, α, θ1, s1’) ∈ T1, s2 ∈ S2, α
∈ ∑1 - ∑2} Note: for transition with interactions in ∑1 only.

o {((s1,s2), γ2, α, θ2, (s1,s2’)) | (s2, γ2, α, θ2, s2’) ∈ T2, s1 ∈ S1, α
∈ (∑2 - ∑1)} Note: for transition with interactions in ∑2 only.

o {((s1,s2), γ1 U γ2, α, θ1U θ2, (s1’,s2’)) | (s1, γ1, α, θ1, s1’) ∈ T1
and (s2, γ2, α2, θ2, s2’) ∈ T2 and α ∈ ∑1 ∩ ∑2} Note: for transi-
tions with common interactions.

Figure 3 shows the resulting machine of the composition operation of S and
Dual(C) of our example. Notice in particular the output transition (C3, {p=cv; p=sv},
!use(p), {}, D4) which is the result of composing S’s output transition (C, {p=sv},
!use(p), {}, D) and Dual(C)’s input transition (1, {p=cv},?use(p), {}, 4). An implicit
condition that variables cv and sv should be equivalent to avoid an unspecified recep-
tion is created.

A1 A2

F1 F5

D4

{p=cv,p=sv}
!use(p)

?ack

?a

!rack

?n(p)
 {sv:=p}

B1

C3

B2 !O
!c(p)

{cv:=p}

!c(p)
{cv:=p}

?m ?m

?n(p)
{sv:=p}

!c(p)
{cv:=p}

!c(p)
{cv:=p}

Fig 3. Composition example. SxDual(C)

 3.2 Chaos Machine

The notion of chaos was introduced by Hoare [Hoare85] to denote the most general
behavior of a module. It was also used in several papers on submodule construction
[PeYe98, DrBo99, Boch02]. For the case of submodule construction we can add vari-
ables as much as we want, since we have the full control over the new machine. How-
ever, to simulate S and C we only need as many variables as S and C combined.
For our EOITS model the chaos machine has
one state which has a looping transition for
each input interaction and each combination of
assignments of interaction parameters to local
variables. Similarly, it has an output transition
for each output interaction and each combina-
tion of variable assignments to parameters. In
Figure 4 we give the Chaos machine for the
submodule construction example using two
variables which correspond to the two vari-
ables of C and S; for the interaction ?n(p), for
instance, this machine contains 4 transitions
with different variable assignments.

n

{}?n(p){sv1:=p, sv2:=p}

{p=sv1}!c(p){}

{}?a,{}
{}?m,{}

{}?n(p){sv1:=p}
{}?n(p){sv2:=p}

{}?n(p){}{p=sv2}!c(p){}

{}!O{}
{}!rack{}

Fig 4. Example Chaos machine:
Chaos(∑X, 2)

3.3 State Splitting

State splitting is done to separate variable configurations that cause guard failure into
separate state splits. As outlined in the following algorithm, it is done in three steps,

first a variable configuration information collection step in the form of variable parti-
tions followed by two consecutive steps for state splitting.

3.3.1 Variable Partition Computation
The concept of variable partition is introduced for the purpose of statically analyzing
an EIOTS machine. It mainly helps in providing an abstract representation of all vari-
able configurations that are possible at each state of the machine. We are particularly
interested in characterizing variable configurations that cause transition guards to fail.

After the execution of a given transition, some variables will be known to have
same values (like those assigned the same input parameter). We say that such vari-
ables match, and we are interested in finding all variable matching relations at each
and every state of the EIOTS. A variable matching relation is an equivalence relation,
since it is reflexive, symmetric and transitive. Therefore, it can be represented by a
partition over the set of variables since every equivalence relation over a set defines a
unique partition of the elements in that set and vice versa. At any given state, more
than one variable configuration or equivalence relation may exist since a state may be
reached through different paths, and each execution path can create possibly a new
variable configuration. However, since the number of variables is finite, there will be
a finite number of possible variable relations and variable partitions at each state.
Typically the initial configuration is represented with a single relation where no vari-
able is known to be matching any other variable than itself. So, the initial partition is
made of classes that have one variable each.

For a given variable configuration we can tell whether it conforms to a transition
guard by checking whether its corresponding variable partition conforms to the guard.
In the following we define the conformance predicate.

Definition 1: Partition Conformance Predicate. The predicate Conform is a map-
ping, Px2PmxV → {True, False} where P is the set of all partitions of V (the set of all
variables), and 2PmxV represents the set of all possible transition guards, such that
Conforms(π,γ)=

){}(}),(|{,, EclEclEvpVvEforclPmp =⇒≠∈∈=∈∀∈∀ IIγπ

Basically it says, if a parameter is restricted the value of several variables then
these variables should be equivalent.

When a transition is executed it updates variables thus changing the variable con-
figuration of the machine. In the following we define a transformation function that
defines the partition representing the new variable configuration given the partition
representing the old configuration and the executed transition.

Definition 2: Partition Transformation function. Each transition in the EIOTS de-
fines a transformation function Transform: Px2PmxV x2VxPm →P U{}, where Trans-
form(π, γ, θ) is defined as follows: Let r be the relation in VxV corresponding to parti-

Algorithm 2. State Splitting Algorithm:
Given G : EIOTS, ∑X Interaction Alphabet; return an EIOTS

• R := ComputePartitions(G)
• SplitPhaseOne(G, ∑X , R, StateGroups)
• SplitPhaseTwo(G, ∑X , R, StateGroups)

Return EIOTS G

tion π. If Conforms (π, γ) then Transform(π, γ, θ) = π’ where π’ is the partition corre-
sponding to relation r’ in VxV such that for variables v1, v2 ∈ V, (v1,v2) ∈ r’ if

a) (v1,v2) ∈ r and not ∃ (v1,p1) or (v2, p2) ∈ θ, or
b) ∃ p∈ Pm such that (v1,p) and (v2,p)∈ θ, or
c) ∃ p∈ Pm, v3∈ V such that (v1,p)∈ θ, (p,v3)∈ γ, (v3,v2)∈ r, and not ∃ p’

such that (v2,p’) ∈ θ

So there will be a resulting partition if the original partition conforms to the transi-

tion guard. And in the resulting partition two variables will be related or in other
words, will be in the same class, if (a) they were in the same class of the original par-
tition and neither is assigned by the transition, or (b) they are assigned the same pa-
rameter, or (c) one of them is assigned a parameter that is restricted to the value of a
variable that was in the class of the second, while the second is not assigned a new
value.

Using the partition transformation function we can define the concept of reachable
partitions to a state as follows.

Definition 3: Reachable Partition to a State. We say that a partition π is reachable
to a state s if and only if there exists a path from s0 to s such that a partition π0={{v}|
v∈ V} will be transformed to π after successively applying on π0 all the transforma-
tions defined by the transitions in the order defined by the path leading to s.

We can compute the set of reachable partitions for each state in an EIOTS machine
by a recursive procedure described in the following.

Algorithm 3. Reachable Partitions Computation Algorithm:
Given E<S, V, s0, Se, ∑, T> returns R //R={(s,π)∈ SxP|π is reachable to state s}.

• R := {}
• π0 := {{v} | v ∈ V}
• newPartitions = {(s0, π0)}
• Loop while newPartitions ≠ {}

o Remove a couple (s1, π) from newPartitions
o R = R U {(s1, π)}
o For each transition (s, γ, a, θ, s’) in {(s, γ, a, θ, s’) ∈ T | s = s1}

• if conforms(π, γ)
o π’ = Transform(π, γ, θ)
o If (s’, π’) ∉ R

 newPartitions = newPartitions U{(s’, π’)}

The partition computation algorithm is a fixed point algorithm that loops until

reaching a point where no progress can be made. Progress is evaluated in terms of
finding new partitions possible in some state of the EIOTS. Since this algorithm only
adds partitions and since the maximum number of partitions that can be introduced is
bounded by the finite set of variable partitions, this algorithm is guaranteed to termi-
nate.

In figure 5 we give part of the results of applying the partition computation algo-
rithm to the composed behavior of X. Note how reachable partitions to state nD4 are
only those variable partitions conforming to the guard {p=sv, p=cv} of the incoming
transition.

nD4

nC3

nB2 !O
{([sv,xv1,cv], [xv2]), ([sv,xv2,cv], [xv1]),
([sv,xv1],[cv],[xv2]), ([sv,xv2],[cv],[xv1]),
([sv,xv1,xv2,cv]), ([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1]), ([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

{p=cv,p=sv}
?use(p)

{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1,xv2,cv])}

{([sv,xv1,cv], [xv2]), ([sv,xv2,cv], [xv1]),
([sv,xv1],[cv],[xv2]), ([sv,xv2],[cv],[xv1]),
([sv,xv1,xv2,cv]), ([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1]), ([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

{p=xv1}!c(p){cv:=p}
{p=xv2}!c(p){cv:=p}

Fig 5. Variable Partition Computation: part of Chaos(X.∑, 2)xDual(SxDual(C))

3.3.2 Phase One
Once all variable partitions reachable at the states of the combined behavior are com-
puted, we will be able to proceed with state splitting. In this phase of the algorithm we
split into two each state that has an outgoing transition with a guard that fails for cer-
tain reachable variable partitions and succeeds for others. One state split will hold the
failing partitions and the other will hold the succeeding ones.

Since each original state might have more than one outgoing transition, a state
might be split into many state splits according to the different combinations of transi-
tion guards’ successes and failures, and according to the availability of reachable par-
titions that satisfy each combination. Each group of states resulting from the splitting
of one original state is saved together to be handled collectively in phase two. One
element of each group is marked as the first state of the group to which all incoming
transitions to the original state are still attached. These incoming transitions are to be
handled in the second phase by either redirection or duplication and subsequent recur-
sive state splitting.

Since we know that all uncontrollable behavior leading to an unsafe behavior will
be eventually blocked, we treat this behavior collectively by using one state split to
represent all partitions causing unsafe behaviors. Therefore, a one element of each
state split group is marked as the uncontrollable split state and is used to hold all par-
titions that cause at least one guarded uncontrollable transition of the original state to
fail. Uncontrollability in submodule construction is determined by the ability of the
new module to control the execution of a given transition; therefore, we need to pro-
vide the algorithm with the set of interactions of the new module. A transition is con-
trollable if (a)its interaction is initiated by the new module, or (b) if the interaction is
an input to the new module and it is not the last transition from the same state with the
same interaction that is not going to the error state. The second controllability condi-
tion is used to represent the ability of the new module to select a particular assignment
of parameters to its local variables.

Next we give the algorithm for phase one. We use the function copyState as a
shorthand for creating a new state as a copy of an existing state without copying in-
coming or outgoing transitions. We use as well the procedure ReplaceState(old, s, G)

to replace state old by state s in G through diverting all incoming transition of state
old to state s. Function newErrorState creates a new error state and returns it.

Algorithm 4. SplitPhaseOne Algorithm:
Given G < S, V, s0, Se, ∑ , T>, ∑X Interaction Alphabet, R Set
 // Note: R ={(s, π)∈ SxP| π is reachable to state s}.
• StateGroups:= {} // this variable will hold tuples of the form (sSet: Set of States, f: State, sError:

state) to store split state groups that will be later treated in Phase 2. f holds all incoming transitions
to the group, and sError is the state with all partitions causing unsafe and uncontrollable behavior

• For each state curS in G.S
o sError := CopyState(G, curS)
o first := curS
o sSet:={curS} //will hold states resulting from the splitting of one original state
o Tout := { (s, γ, a, θ, s’) ∈ T | s= curS }
o Loop while Tout ≠ {}

 Remove any element (s1, γ1, a1, θ1, s1’) from Tout
 BadPartitions = { π ∈ P | ∃ (s,π) ∈ R where s1 = s and (not conforms(π,
γ1) or s’∈ G.Se)}

 If BadPartitions ≠ {}
• R = R – {(s, π) ∈ SxP | s = s1 and π ∈ BadPartitions}
• If a1 ∈ ∑Xout or (a1 ∈ ∑Xin and cardinality({ (s, γ, a, θ, s’,) ∈ T | s =

s1, a = a1 and s’ ∉ G.Se}) > 1) // transition is controllable
• //Split the state, duplicate outgoing trans, disable nonconforming trans
o η := CopyState(G, s1)
o sSet := sSet U {η}
o T:=TU{(η, γ2, a2, θ2,s2’) | ∃ (s2, γ2, a2, θ2, s’2) ∈ T where s2 = s1}
o Tout:=ToutU{(η,γ2,a2,θ2,s2’)| ∃ (s2,γ2,a2,θ2,s’2)∈ Tout where s2=s1}
o T = (T – {(η, γ1, a1, θ1, s1’)}) U {(η, γ2, a1, θ2, newErrorState(G))}

• else // Transition is uncontrollable
o η := sError

• R = R U {(s,π) ∈ SxP| s = η and π ∈ BadPartitions}
• If {(s, π)∈ R| s=s1}={}// Delete state from group if it has no π’s left
o sSet = sSet – {s1}
o If s1 = first

 ReplaceState(first, η, G) // redirects all incoming trans of first to η
 first := η

o If {(s,p) ∈ R | s = sError} ≠ {}
 sSet := sSet U {sError}
 StateGroups:= StateGroups U {(sSet, first, sError)}

o Else
 If |sSet| > 1

o StateGroups:= StateGroups U {(sSet, first, null)}

In Figure 6 we show the result of applying phase one of the splitting algorithm to

the example used in Figure 5. In particular notice splitting state nC3 to two states
nC3.1 and nC3.sE, where nC3.1 holds all partitions that conform to the guarded tran-

sition (nC3, {p=sv, p=cv}, ?use(p), {}, D4), and nC3.sE holds all partitions that do
not conform, and since the mentioned transition is not controllable, nC3.sE is labeled
as the error state of the state split group.

nD4

nC3
.1

nB2 !O
{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1],[cv],[xv2]),
([sv,xv2],[cv],[xv1]),
([sv,xv1,xv2,cv]),
([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1])
([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

{p=cv,p=sv}
?use(p)

{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1,xv2,cv])}

nC3
.sE

{([sv,xv1],[cv],[xv2]),
([sv,xv2],[cv],[xv1]),
([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1])
([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1,xv2,cv])}

{p=xv1}!c(p){cv:=p}
{p=xv2}!c(p){cv:=p}

Fig 6. Phase one of state splitting: part of Chaos(X.∑, 2)xDual(SxDual(C))

3.3.3 Phase Two
In this phase of the algorithm each group of split states resulting from phase one is
handled separately. The state designated first of its group has all incoming transitions
of the original state. Each incoming transition to the group may lead to a recursive
creation of a new state split group of the transition origin. For example transition
(nB2, {}, !O, {}, nC3) in figure 6 will lead to the splitting of state nB2. At first nB2 is
split into two states since nC3 group has only two states. However, due to incoming
transitions to these states, the two nB2 states will be recursively split into states
nB2.1, nB2.2, nB2.3, and nB2.4 as shown in figure 7.

This algorithm is guaranteed to stop since it splits a state only if there are reachable
partitions to be split. And it only adds partitions to state split that is designated an er-
ror state, but such a state split is not split any further. The maximum number of states
that could result from splitting would be |R| where R is the state partition reach-
ability relation. In the extreme, this is the case where each state is split into as
many state splits as there are reachable partitions, that is, each split state will
be holding a single partition.

Algorithm 5. SplitPhaseTwo Algorithm
Given G < S, V, s0, Se, ∑ , T>, ∑X Interaction Alphabet , StateGroups, R Set // R
={(s, π)∈ SxP| π is reachable to state s}.
• Loop Until StateGroups= {}
o Remove some element (StateSet, first, sError) from StateGroups
o Tin := {(s, γ, a, θ, s’)∈ T | s’= first}// all incoming transition to the current

group
o Loop Until Tin = {} //Handle each incoming transition separately

 Remove some element (s1, γ1, a1, θ1, s1’) from Tin
 For each state curS in StateSet
• // the inverse of Transform function for the partitions of the current state
• PartitionSet := { π ∈ P| (s1, π) ∈ R and (curS, Transform(γ1,θ1, π)) ∈ R}
• If PartitionSet ≠ {}.
o s1Group = {(sSet,e,f) ∈ StateGroups| s1 ∈ sSet}
o If s1Group ≠ {}// s1 the starting state of the current transition belongs

to a state group that is waiting to be handled
 Remove some (sSet, e, f) from s1Group
 StateGroups = StateGroups - s1Group

o Else // Create new group
 sSet := {s1}
 f := s1
 e := null

o If curS = sError and (a1 ∉ ∑Xout and (a1 ∉ ∑Xin or cardinality({ (s,
γ,a, θ, s’) ∈ T| s = s1, a = a1 and s’ ∉ G.Se }) = 1)// uncontrollable
transition
 if e = null

• e := copyState(G, s1)
 η:= e

o Else
 η:= CopyState(G, s1)
 T:= TU{(η, γ2, a2, θ2, s2’)| ∃ (s2,γ2, a2,θ2, s’2)∈ T where s2 = s1}
 Tin:=TinU{(η,γ2,a2,θ2,s2’)| ∃ (s2,γ2,a2,θ2, s’2)∈ Tin where s2=s1}
 // Redirect η’s transition that is the duplicate of the current transi-

tion to the current state.
 T:= (T – {(η, γ1, a1, θ1, s1’)}) U {(η, γ2, a1, θ2, curS)}

o sSet := sSet U {η}
o R:= R U {(η, π) | π ∈ PartitionSet}
o R:= R - {(s, π) ∈ R | s = s1 and π ∈ PartitionSet}
o If {(s, π) ∈ R | s = s1} = {} //Delete state if it has no partitions left

 sSet:= sSet – {s1}
 If s1 = f

• ReplaceState(f, η, G) // redirect all incoming transitions of f to η
• f := η

o If |sSet| > 1 or e ≠ null
 StateGroups:= StateGroupsU {(sSet, f,e)

o G.Se = G.Se U {sError}

nD4

nC3
.1

nB2
.3

!O

{p=cv,p=sv}
?use(p)

{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1,xv2,cv])}

nC3
.sE

{([sv,xv1],[cv],[xv2]),
([sv,xv2],[cv],[xv1]),
([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1])
([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

{([sv,xv1,cv], [xv2]),
([sv,xv2,cv], [xv1]),
([sv,xv1,xv2,cv])}

{([sv,xv1],[cv],[xv2]),
([sv,xv2],[cv],[xv1]),
([sv,xv1],[cv,xv2]),
([sv,xv2],[cv,xv1])
([sv], [sv1], [sv2, cv]),
([sv], [sv2], [sv1, cv])}

nB2
.2

nB2
.1

nB2
.4

([sv,xv1,xv2,cv])}

{([sv,xv1,cv], [xv2])}

{([sv,xv2,cv], [xv1])}

{p=xv1}!c(p){cv:=p}

!O

!O

{p=xv2}!c(p){cv:=p}

{p=xv1}!c(p)
{cv:=p}

{p=xv2}!c(p)
{cv:=p}

{p=xv1}!c(p)
{cv:=p}

{p=xv2}!c(p)
{cv:=p}

Fig. 7. Phase two of state splitting: part of Chaos(X.∑, 2) x Dual(SxDual(C))

The state labeled as the error state of the currently handled group (such as state
nC3.sE in Figure 8) receives special treatment. When handling an incoming transition
to the error state of a group, the new state split of the transition's origin state corre-
sponding to the error state is labeled itself as the error state of its group only if the
transition is uncontrollable. In our example, new state split nB2.4 is not marked as the
error state of its group since transition (nB2.4, {}, !O, {}, nC3.sE) is controllable.

3.4 Determinization and the Removal of Uncontrollable Behavior

Determinization or internal transition removal uses the usual subset construction algo-
rithm for determinizing finite automata. As mentioned before, this is possible since
the splitting algorithm removes the ambiguity created by transition guards.

The determinization results in new unsafe states due to unobservability. These
states are removed together with all states from which the unsafe states can be
reached through uncontrollable transitions. The same controllability criterion is used
as in the case of splitting. This is similar to the case of submodule construction for
simple finite state machine models.

4. Conclusion and Future Work

This paper addresses the problem of extending submodule construction techniques for
finite state machine models to more expressive behavioral models that use variables,
simple guards for transitions and exchange data with the environment through interac-
tion parameters. We have defined a behavioral model with features based on an ex-
tended model of Input-Output Automata. The main contribution of this paper is the

introduction of dataflow issues to submodule construction problem which has been
limited in the past to control flow. However, we have only dealt with the simple usage
of data, mainly saving and retransmission. We seek in the future to handle the control
flow usage of data through building up on the current approach. We need to ease re-
strictions on guards such as allowing conjunction, disjunction, explicit negation and
state variable equality predicates. This work will be as well the basis for further work
on providing more efficient versions of the proposed algorithm through exploring the
use of higher abstractions for representing variable partitions and taking into consid-
eration undefined and dead variables.

References

[BEYB03] S. Buffalov, K. El-Fakih, N. Yevtushenko, G. V. Bochmann: Progressive Solutions
to a Parallel Automata Equation. FORTE 03, pp. 367-382, 2003.

[Boch02] G. V. Bochmann. Submodule Construction for Specifications with Input Assump-
tions and Output Guarantees. FORTE 02, pp.17-33, 2002.

[BrWo94] B. A. Brandin, and W.M. Wonham. Supervisory Control of Timed Discrete Event
Systems. IEEE Transactions on Automatic Control, Vol. 39, No. 2, pp. 329-342, 1994.

[DrBo99] J. Drissi, and G.V. Bochmann. Submodule Construction for Systems of I/O Auto-
mata. Tech. Rep. no. 1133, DIRO, University of Montreal, 1999.

[Hoar85] C. A. R. Hoare. Communicating Sequential Processes, Prentice Hall, Inc., 1985.
[KeHa93] S.G. Kelekar, G. W. Hart. Synthesis of Protocols and Protocol Converters Using the

Submodule Construction Approach. PSTV93, pp. 307-322, 1993.
[KNM97] R. Kumar, S. Nelvagal, and S. I. Marcus. A Discrete Event Systems Approach for

Protocol Conversion. Discrete Event Dynamical Systems: Theory and Applications, Vol. 7,
No. 3, pp. 295-315, 1997.

[LeQi90] P. Lewis and H. Qin. Factorization of finite state machines under observational
equivalence. LNCS 458, Springer, 1990.

[LyTu89] N. Lynch and M. Tuttle. An introduction to input/output automata, CWI Quarterly,
Vol. 3, No. 2, pp. 219-246, 1989.

[MeBo83] P. Merlin, and G. v. Bochmann. On The Construction of Submodule Specifications
and Communication Protocols, ACM Trans. On Programming Languages and Systems. Vol.
5, No. 1, pp. 1-25, 1983

[NeBr95] R. Negulescu, J. A. Brzozowski. Relative liveness: from intuition to automated veri-
fication. ASYNC 95, 108-117, 1995.

[Parr89] J. Parrow. Submodule Construction as Equation Solving in CCS. Theoretical Com-
puter Science, Vol. 68, 1989.

[PeYe98] A. Petrenko and N. Yevtushenko. Solving Asynchronous Equations. In Proc. of IFIP
FORTE/PSTV’98 Conf., Paris, Chapman-Hall, 1998.

[QiLe91] H. Qin and P. Lewis. Factorisation Of Finite State Machines Under Strong and Ob-
servational Equivalences. Journal of Formal Aspects of Computing, Vol. 3, pp. 284- 307,
1991.

[RBJ00] V. Rusu, L. du Bousquet, T. Jéron. An Approach to Symbolic Test Generation. IFM
2000: 338-357, 2000.

[Shie89] M. W. Shields. Implicit system specification and the interface equation. The Com-
puter Journal, Vol. 32, No. 5, pp. 399-412, 1989.

[TBD97] Z. Tao, G. v. Bochmann and R. Dssouli. A Formal Method For Synthesizing Opti-
mized Protocol Converters And Its Application To Mobile Data Networks. Mobile Net-
works & Applications, Vol.2, No. 3, pp. 259-69, 1997.

